Contents

1.	Intro	duction	1
	1.1	Background and Historical Sketch	1
	1.2.	Linear Programming	2
	1.3.	Illustrative Examples	3
	1,4.	Graphical Solutions	5
	1.5.	Nonlinear Programming	9
		Part – 1	
		MATHEMATICAL FOUNDATIONS	
2.	Basic	Theory of Sets and Functions	11
	2.1.	Sets	13
	2.2.	Vectors	15
	2.3.	Topological Properties of Rn	16
	2.4.	Sequences and Subsequences	18
	2.5.	Mappings and Functions	19
	2.6.	Continuous Functions	20
	2.7.	Infimum and Supremum of Functions	20
	2.8.	Minima and Maxima of Functions	21
	2.9.	Differentiable Functions	22
3.	Vecto	or Spaces	26
	3.1.	Fields	26
	3.2.	Vector Spaces	26
	3.3.	Subspaces	27
	3.4.	Linear Dependence	28
	3.5.	Basis and Dimension	31
	3.6.	Inner Product Spaces	34

X	Mathematical	Programming:	Theory and	Methods
---	--------------	--------------	------------	---------

4.	Mat	rices and Determinants	38
	4.1.	Matrices	38
	4.2.	Relations and Operations	39
	4.3.	Partitioning of Matrices	41
	4.4.	Rank of a Matrix	42
	4.5.	Determinants	43
	4.6.	Properties of Determinants	44
	4.7.	Minors and Cofactors	44
	4.8.	Determinants and Rank	45
	4.9.	The Inverse Matrix	46
5.	Line	ar Transformations and Rank	50
	5.1.	Linear Transformations and Rank	50
	5.2.	Product of Linear Transformations	51
	5.3.	Elementary Transformations	52
	5.4.	Echelon Matrices and Rank	54
6.	Qua	dratic Forms and Eigenvalue Problems	56
	6.1.	Quadratic Forms	56
	6.2.	Definite Quadratic Forms	57
	6.3.	Characteristic Vectors and Characteristic Values	59
7.	Syste	ems of Linear Equations and Linear Inequalities	63
	7.1.	Linear Equations	63
	7.2.	Existence Theorems for Systems of Linear Equations	63
	7.3.	Basic Solutions and Degeneracy	66
	7.4.	Theorems of the Alternative	68
8.	Con	vex Sets and Convex Cones	76
	8.1.	Introduction and Preliminary Definitions	76
	8.2.	Convex Sets and their Properties	76
	8.3.	Convex Hulls	79
	8.4.	Separation and Support of Convex Sets	81
	8.5.	Convex Polytopes and Polyhedra	87
	8.6.	Convex Cones	91
9.	Con	vex and Concave Functions	94
	9.1.	Definitions and Basic Properties	94
	9.2.	Differentiable Convex Functions	101
	9.3.	Generalization of Convex Functions	104
	9.4.	Exercises	113

Part – 2 LINEAR PROGRAMMING

10.	. Linea	ar Programming Problems	115
	10.1.	The General Problem	117
	10.2.	Equivalent Formulations	117
	10.3.	Definitions and Terminologies	120
	10.4.	Basic Solutions of Linear Programs	120
	10.5.	Fundamental Properties of Linear Programs	121
	10.6.	Exercises	126
11.	Simp	lex Method: Theory and Computation	132
	11.1.	Introduction	132
	11.2.	Theory of the Simplex Method	132
	11.3.	Method of Computation: The Simplex Algorithm	136
	11.4.	The Simplex Tableau	137
	11.5.	Replacement Operation	138
	11.6.	Example	141
	11.7.	Exercises	142
12.	Simp	lex Method: Initial Basic Feasible Solution	145
	12.1.	Introduction: Artificial Variable Techniques	145
	12.2.	The Two-Phase Method [117]	145
	12.3.	Examples	147
	12.4.	The Method of Penalties [71]	150
	12.5.	Examples: Penalty Method	152
	12.6.	Inconsistency and Redundancy	155
	12.7.	Exercises	156
13.	Dege	neracy in Linear Programming	158
	13.1.	Introduction	158
	13.2.	Charnes' Perturbation Method	159
	13.3.	Example	162
	13.4.	Exercises	163
14.	The 1	Revised Simplex Method	165
	14.1.	Introduction	165
	14.2.	Outline of the Procedure	165
	14.3.	Example	172
	14.4.	Exercises	175

xii Mathematical Programming: Theory and Metho	cii	Mathematical	Programming:	Theory and Method
--	-----	--------------	--------------	-------------------

15. Du	ality in Linear Programming	177
15.	ĺ.	177
15.2	2. Cannonical Dual Programs and Duality Theorems	177
15.3	3. Equivalent Dual Forms	182
15.4	4. Other Important Results	185
15.5	5. Lagrange Multipliers and Duality	189
15.6	5. Duality in the Simplex Method	190
15.7	7. Example	192
15.8	3. Applications	194
15.9	P. Economic Interpretation of Duality	195
15.9	P. Exercises	197
16. Vai	riants of the Simplex Method	199
16.1	1. Introduction	199
16.2	2. The Dual Simplex Method	199
16.3	3. The Dual Simplex Algorithm	202
16.4	4. Initial Dual - Feasible Basic Solution	203
16.5	5. Example	208
16.6	5. The Primal - Dual Algorithm	210
16.7	7. Summary of the Primal-Dual Algorithm	215
16.8	3. Example	216
16.9	P. The Initial Solution to the Dual Problem:	
	The Artificial Constraint Technique	218
16.9	9. Exercises	219
	t-Optimization Problems: Sensitivity	222
	alysis and Parametric Programming	
	. Introduction	222
	2. Sensitivity Analysis	222
	3. Changes in the Cost Vector	223
	4. Changes in the Requirement Vector	224
17.5	5. Changes in the Elements of the Technology Matrix	225
10.6	6. Addition of a Constraint	229
17.7	7. Addition of a Variable	230
17.8	3. Parametric Programming	230
17.9	P. Parametric Changes in the Cost Vector	230
17.1	0. Parametric Changes in the Requirement Vector	232
17.1	1. Exercises	233

		Contents	xili
18. Bounded V	/ariable Problems		236
18.2. Bour	ded from Below		236
18.3. Bour	ded from Above		237
18.4. The	Optimality Criterion		238
18.5. Impr	oving a Basic Feasible Solution		239
18.6. Exan	pple		241
18.7. Exer	cises		244
19. Transporta	ation Problems		245
19.1. Intro	duction		245
19.2. The	Mathematical Formulation		245
19.3. Fund	amental Properties of Transportation Problem	IS	248
19.4. Initia	l Basic Feasible Solution		251
19.5. Dual	ity and Optimality Criterion		255
19.6. Impr	ovement of a Basic Feasible Solution		256
19.7. The	Transportation Algorithm		257
19.8. Dege	neracy		258
19.9. Exan	ples		259
19.10. Unba	lanced Transportation Problem		262
19.11. The	Franshipment Problem		266
19.12. Exer	cises		270
20. Assignmer	t Problems		275
20.1. Intro	duction and Mathematical Formulation		275
20.2. The l	Hungarian Method		276
20.3. The	Assignment Algorithm		277
20.4. Varia	tions of the Assignment Model		279
20.5. Some	Applications of the Assignment Model		280
20.6. Exer	cises		288
21. The Decon	position Principle for Linear Programs		291
21.1 Intro	duction		291
21.2. The 0	Original Problem and its Equivalent		291
21.3. The I	Decomposition Algorithm		294
21.4. Initia	l Basic Feasible Solution		295
21.5. The 6	Case of Unbounded Sj		296
21.6. Rema	arks on Methods of Decomposition		298
21.7. Exam	ple		298
21.8. Exerc	eises		301

xiv Mathematical Programming: Theory and Method:	xiv	Mathematical	Programming:	Theory	/ and	Method
--	-----	--------------	--------------	--------	-------	--------

22.	Polyn	omial Time Algorithms for Linear Programming	303
	22.1.	Introduction	303
	22.2.	Computational Complexity of Linear Programs	303
	22.3.	Khachiyan's Ellipsoid Method	304
	22.4.	Solving Linear Programming Problems by the Ellipsoid Method	307
	22.5.	Karmarkar's Polynomial-Time Algorithm	308
	22.6.	Convergence and Complexity of Karmarkar's Algorithm	311
	22.7.	Conversion of a General Linear Program into Karmarkar's Form	316
	22.8.	Exercises	320
		Part – 3	
	N	IONLINEAR AND DYNAMIC PROGRAMMING	
23.	Nonli	near Programming	321
	23.1.	Introduction	323
	23.2.	Unconstrained Optimization	324
	23.3.	Constrained Optimization	326
	23.4.	Kuhn-Tucker Optimality Conditions	328
	23.5.	KuhnTucker Constraint Qualification	330
	23.6.	Other Constraint Qualifications	333
	23.7.	Lagrange Saddle Point Problem and Kuhn-Tucker Conditions	335
	23.8.	Exercises	338
24.	Quad	ratic Programming	340
	24.1	Introduction	340
	24.2.	Wolfe's Method	342
	24.3.	Dantzig's Method	349
	24.4.	Beale's Method	350
	24.5.	Lemke's complementary Pivoting Algorithm	356
	24.6.	Exercises	363
25.	Meth	ods of Nonlinear Programming	366
	25.1.	Separable Programming	366
	25.2.	Kelley's Cutting Plane Method	374
	25.3.	Zoutendijk's Method of Feasible Directions	379
	25.4.	Rosen's Gradient Projection Method	394
	25.5.	Wolfe's Reduced Gradient Method	403
	25.6.	Zangwill's Convex Simplex Method	409

95 0000	Co	ntents	XV
25.7.	Dantzig's Method for Convex Programs		414
25.8.	Exercises		418
26. Duali	ity in Nonlinear Programming		423
26.1.	Introduction		423
26.2.	Duality Theorems		423
26.3.	Special Cases		426
27. Stoch	astic Programming		431
27.1.	Introduction		431
27.2.	General Stochastic Linear Program [422, 423]		434
27.3.	The Sochastic Objective Function		438
27.4.	The General Case		454
27.5.	Exercises		459
28. Some	Special Topics in Mathematical Programming		462
28.1.	Goal Programming		462
28.2.	Multiple Objective Linear Programming		467
28.3.	Fractional Programming		479
28.4.	Exercises		497
29. Dyna	mic Programming		502
29.1.	Introduction		502
29.2.	Basic Features of Dynamic Programming Problems and the Principle of Optimality		502
29.3.	The Functional Equation		503
	Cargo Loading Problem		504
	Forward and Backward Computations, Sensitivity Analy	ysis	507
	Shortest Route Problem		507
29.7.	Investment Planning		509
29.8.	Inventory Problem		512
29.9.	Reliability Problem		515
29.10	. Cases where Decision Variables are Continuous		516
29.11	. The Problem of Dimensionality		519
29.12	. Reduction in Dimensionality		523
29.13	. Stochastic Dynamic Programming		526
29.14	. Infinite Stage Process		528
29.15	. Exercises		529
Bibliograp	ohy		534
Index			567