Contents | Preface | > | |--|------------------------------------| | List of Notations | X | | List of Acronyms | XX | | | | | Part I Theory | | | INTRODUCTION 1.1 The main problem 1.2 Some existing approaches to optimality conditions and numerical methods 1.3 Existence of solutions | 3
5
10 | | AUXILIARY RESULTS Selected topics from set-valued analysis Lipschitz analysis Conical approximations and optimality conditions Projection onto polyhedral sets Bibliographical notes | 13
13
20
33
37
42 | | 3. ALGORITHMS OF NONSMOOTH OPTIMIZATION 3.1 Conceptual idea 3.2 BT-algorithm: the convex case 3.3 BT-algorithm: the nonconvex case 3.4 Nonsmooth Newton's method Bibliographical notes | 43
43
47
61
65
68 | | 4. GENERALIZED EQUATIONS 4.1 Equivalent Formulations 4.2 Existence and uniqueness Bibliographical notes | 69
70
78
83 | | 5. STABILITY OF SOLUTIONS TO PERTURBED GENERALIZED EQUATIONS 5.1 Analysis of the implicit map 5.2 Generalized equations with polyhedral feasible sets 5.3 Admissible sets of particular interest Bibliographical notes | 85
85
89
92
102
vii | | | VII | | V111 | OPTIMIZATION PROBLEMS WITH EQUILIBRIUM CONSTRAINTS | | |-----------------------------------|--|---| | 6.1
6.2
6.3 | | 103
103
113
120
122 | | 7.1
7.2 | Optimality conditions The solution method Diographical notes | 125
126
134
147 | | Part II | Applications | | | 8.1 | RODUCTION Optimum shape design Economic modelling | 151
151
153 | | 9. ME
9.1
9.2
9.3
9.4 | Packaging problem with rigid obstacle Packaging problem with compliant obstacle | 155
155
163
170
172 | | 10.1
10.2 | ASTICITY PROBLEMS WITH INTERNAL OBSTACLES 1 Linear elasticity problem 2 Design of elastic-perfectly plastic structures 3 Design of masonry structures | 181
181
191
196 | | 11.1
11.2
11.3 | NTACT PROBLEM WITH COULOMB FRICTION 1 Problem formulation 2 Numerical solution 3 Control of friction coefficients | 203
204
205
211 | | 12.1
12.2 | ONOMIC APPLICATIONS The Cournot oligopoly Generalized Nash equilibrium iographical notes | 217219226234 | | Append | dices | 237 | | A.2
A.3 | Problem Assumptions Formulas | 239
239
239
240 | | B–Basi
B.1 | c facts on elliptic boundary value problems | 247 | | | Distributions Sobolev spaces | 247
249 | 250 B.3 Elliptic problems | | Contents ix | |--|-------------| | C-Complementarity problems | 255 | | C.1 Proof of Theorem 4.7 | 255 | | C.2 Supplement to proof of Theorem 4.9 | 257 | | References | 259 | | | | | Index | • | | | 269 |